Non-Monotone Stochastic Generalized Porous Media Equations∗
نویسندگان
چکیده
By using the Nash inequality and a monotonicity approximation argument, existence and uniqueness of strong solutions are proved for a class of non-monotone stochastic generalized porous media equations. Moreover, we prove for a large class of stochastic PDE that the solutions stay in the smaller L2-space provided the initial value does, so that some recent results in the literature are considerably strengthened. AMS subject Classification: 76S05, 60H15.
منابع مشابه
Se p 20 09 Harnack Inequality and Applications for Stochastic Evolution Equations with Monotone Drifts ∗
As a Generalization to [37] where the dimension-free Harnack inequality was established for stochastic porous media equations, this paper presents analogous results for a large class of stochastic evolution equations with general monotone drifts. Some ergodicity, compactness and contractivity properties are established for the associated transition semigroups. Moreover, the exponential converge...
متن کاملConcentration of Invariant Measures for Stochastic Generalized Porous Media Equations
By using Bernstein functions, existence and concentration properties are studied for invariant measures of the infinitesimal generators associated to a large class of stochastic generalized porous media equations. In particular, results derived in [4] are extended to equations with non-constant and stronger noises. Analogous results are also proved for invariant probability measures for strong ...
متن کاملStochastic porous media equation and self-organized criticality
The existence and uniqueness of nonnegative strong solutions for stochastic porous media equations with noncoercive monotone diffusivity function and Wiener forcing term is proven. The finite time extinction of solutions with high probability is also proven in 1-D. The results are relevant for self-organized critical behaviour of stochastic nonlinear diffusion equations with critical states. AM...
متن کاملSPDE in Hilbert Space with Locally Monotone Coefficients
The aim of this paper is to extend the usual framework of SPDE with monotone coefficients to include a large class of cases with merely locally monotone coefficients. This new framework is conceptually not more involved than the classical one, but includes many more fundamental examples not included previously. Thus our main result can be applied to various types of SPDEs such as stochastic rea...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کامل